login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: x = A(x) - A(x)^2 - A(A(x))^2.
2

%I #8 May 01 2024 01:57:31

%S 1,2,12,108,1208,15536,220832,3390480,55411872,954553664,17211258240,

%T 323148560768,6293245904640,126740607526400,2633207863038976,

%U 56330595706808576,1238815010325576192,27970477203200824320

%N G.f. satisfies: x = A(x) - A(x)^2 - A(A(x))^2.

%F G.f. satisfies: A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.

%F G.f. satisfies: A(x) = A(A(x)) - A(A(x))^2 - A(A(A(x)))^2.

%F G.f. satisfies: x = A( x-x^2 - A(x)^2 ).

%F ...

%F Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:

%F . A = 1 + xA^2 + xB^2;

%F . B = A + xB^2 + xC^2;

%F . C = B + xC^2 + xD^2;

%F . D = C + xD^2 + xE^2; ...

%F . also B = A(A(x))/x, C = A(A(A(x)))/x, D = A(A(A(A(x))))/x, etc.

%e G.f.: A(x) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1208*x^5 + 15536*x^6 +...

%e Related expansions:

%e A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 264*x^5 + 2992*x^6 + 38496*x^7 +...

%e A(A(x)) = x + 4*x^2 + 32*x^3 + 344*x^4 + 4384*x^5 + 62624*x^6 +...

%e A(A(x))^2 = x^2 + 8*x^3 + 80*x^4 + 944*x^5 + 12544*x^6 + 182336*x^7 +...

%e A_{-1}(x) = x - 2*x^2 - 4*x^3 - 28*x^4 - 264*x^5 - 2992*x^6 -...

%e ...

%e Illustrate A_{n}(x) = A_{n+1}(x) - A_{n+1}(x)^2 - A_{n+2}(x)^2 by the following tables of coefficients in the iterations of g.f. A(x).

%e Coefficients in iterations A_{n}(x), n=1..8, begin:

%e A_1: [1, 2, 12, 108, 1208, 15536, 220832, 3390480,...];

%e A_2: [1, 4, 32, 344, 4384, 62624, 973056, 16152608,...];

%e A_3: [1, 6, 60, 756, 10936, 173968, 2972320, 53760496,...];

%e A_4: [1, 8, 96, 1392, 22656, 399808, 7503616, 147999296,...];

%e A_5: [1, 10, 140, 2300, 41720, 811760, 16670112, 357673168,...];

%e A_6: [1, 12, 192, 3528, 70688, 1506656, 33688064, 783303776,...];

%e A_7: [1, 14, 252, 5124, 112504, 2610384, 63227808, 1586464432,...];

%e A_8: [1, 16, 320, 7136, 170496, 4281728, 111800832, 3014395008,...].

%e ...

%e Coefficients in squared iterations A_{n}(x)^2, for n=1..8, begin:

%e (A_1)^2: [0, 1, 4, 28, 264, 2992, 38496, 544464, 8298080,...];

%e (A_2)^2: [0, 1, 8, 80, 944, 12544, 182336, 2846016, 47113792,...];

%e (A_3)^2: [0, 1, 12, 156, 2232, 34544, 569888, 9916112, ...];

%e (A_4)^2: [0, 1, 16, 256, 4320, 76800, 1429376, 27691776, ...];

%e (A_5)^2: [0, 1, 20, 380, 7400, 149040, 3101920, 66547024, ...];

%e (A_6)^2: [0, 1, 24, 528, 11664, 262912, 6064576, 143126848, ...];

%e (A_7)^2: [0, 1, 28, 700, 17304, 431984, 10953376, 282503760, ...];

%e (A_8)^2: [0, 1, 32, 896, 24512, 671744, 18586368, 520656896, ...].

%o (PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x-x^2-(A+x*O(x^n))^2)); polcoeff(A, n))}

%Y Cf. A292810, A177397, A276365.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jun 01 2010