login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177412
Fibonacci sequence beginning 14831,41069.
1
14831, 41069, 55900, 96969, 152869, 249838, 402707, 652545, 1055252, 1707797, 2763049, 4470846, 7233895, 11704741, 18938636, 30643377, 49582013, 80225390, 129807403, 210032793, 339840196, 549872989, 889713185, 1439586174, 2329299359, 3768885533, 6098184892, 9867070425, 15965255317, 25832325742, 41797581059
OFFSET
0,1
COMMENTS
a(0)=14831 is a prime; the next prime number in the sequence is a(18604) = 2278143...6069, which has 3893 digits. (The initial values are chosen for this particularly long chain of consecutive composites.)
FORMULA
From R. J. Mathar, Dec 12 2010: (Start)
a(n) = a(n-1) + a(n-2).
G.f.: (14831+26238*x) / (1-x-x^2).
(End)
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-67307+14831*sqrt(5)) + (1+sqrt(5))^n*(67307+14831*sqrt(5)))) / sqrt(5). - Colin Barker, May 03 2017
MAPLE
a:= n-> (<<0|1>, <1|1>>^n. <<14831, 41069>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 06 2021
MATHEMATICA
q=2; Do[Do[If[GCD[x, y]!=1, Break[]]; a=x; b=y; lst={a, b}; k=2; Do[If[PrimeQ[c=a+b], Break[]]; k++; AppendTo[lst, c]; a=b; b=c, {n, 10!}]; If[k>q, q=k; Print[If[Length[lst]>9, Take[lst, 9], lst], k, "=", c]], {y, 2*x+1, 4*x+1}], {x, 0, 10!}]
PROG
(PARI) Vec((14831+26238*x) / (1-x-x^2) + O(x^30)) \\ Colin Barker, May 03 2017
CROSSREFS
Cf. A000045.
Sequence in context: A251332 A186790 A234766 * A209947 A023045 A186901
KEYWORD
nonn,easy
AUTHOR
STATUS
approved