Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 06 2021 20:39:27
%S 14831,41069,55900,96969,152869,249838,402707,652545,1055252,1707797,
%T 2763049,4470846,7233895,11704741,18938636,30643377,49582013,80225390,
%U 129807403,210032793,339840196,549872989,889713185,1439586174,2329299359,3768885533,6098184892,9867070425,15965255317,25832325742,41797581059
%N Fibonacci sequence beginning 14831,41069.
%C a(0)=14831 is a prime; the next prime number in the sequence is a(18604) = 2278143...6069, which has 3893 digits. (The initial values are chosen for this particularly long chain of consecutive composites.)
%H Colin Barker, <a href="/A177412/b177412.txt">Table of n, a(n) for n = 0..1000</a>
%H D. E. Knuth, <a href="http://www.jstor.org/stable/2691504">A Fibonacci-like sequence of composite numbers</a>, Math. Mag. 63 (1) (1990) 21-25.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F From _R. J. Mathar_, Dec 12 2010: (Start)
%F a(n) = a(n-1) + a(n-2).
%F G.f.: (14831+26238*x) / (1-x-x^2).
%F (End)
%F a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-67307+14831*sqrt(5)) + (1+sqrt(5))^n*(67307+14831*sqrt(5)))) / sqrt(5). - _Colin Barker_, May 03 2017
%p a:= n-> (<<0|1>, <1|1>>^n. <<14831, 41069>>)[1, 1]:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 06 2021
%t q=2;Do[Do[If[GCD[x,y]!=1,Break[]];a=x;b=y;lst={a,b};k=2;Do[If[PrimeQ[c=a+b],Break[]];k++;AppendTo[lst,c];a=b;b=c,{n,10!}];If[k>q,q=k;Print[If[Length[lst]>9,Take[lst,9],lst],k,"=",c]],{y,2*x+1,4*x+1}],{x,0,10!}]
%o (PARI) Vec((14831+26238*x) / (1-x-x^2) + O(x^30)) \\ _Colin Barker_, May 03 2017
%Y Cf. A000045.
%K nonn,easy
%O 0,1
%A _Vladimir Joseph Stephan Orlovsky_, Dec 10 2010