Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 18:37:21
%S 1,2,8,40,224,1352,8576,56352,380160,2617584,18320384,129950912,
%T 932114432,6749344832,49268899840,362189529344,2678989406208,
%U 19923485019840,148887398711296,1117452514604800,8419605676818432
%N G.f. satisfies: A(x) = x + A( 4*A(x)^4 )^(1/2).
%F Radius of convergence, r, and related values:
%F . r = 0.123195593008501117935531659506400229201428882504980293279833...
%F . A(r) = 0.239702251488238187695726754757078686233527461098463854580...
%F . A(-r) = -0.1022686661772839286606841162458831990656192887231153817...
%F . limit a(n)/a(n+1) = r.
%F Series reversion: let R(x) satisfy R(A(x)) = x, then
%F . R(x) = x - A(4x^4)^(1/2),
%F . x/R(x) = x*d/dx[x/R(x)] at x = A(r) where r = radius of convergence.
%e G.f.: A(x) = x + 2*x^2 + 8*x^3 + 40*x^4 + 224*x^5 + 1352*x^6 +...
%e Related expansions:
%e . A(4A(x)^4) = 4*x^4 + 32*x^5 + 224*x^6 + 1536*x^7 + 10592*x^8 +...
%e . A(x)^4 = x^4 + 8*x^5 + 56*x^6 + 384*x^7 + 2640*x^8 + 18336*x^9 +...
%e . A(4x^4)^(1/2) = 2*x^2 + 8*x^6 + 112*x^10 + 2112*x^14 + 45760*x^18 +...
%e ...
%e The series reversion is defined by R(x) = x - A(4x^4)^(1/2) where:
%e . R(x) = x - 2*x^2 - 8*x^6 - 112*x^10 - 2112*x^14 - 45760*x^18 -...
%e . x/R(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 40*x^5 + 96*x^6 + 224*x^7 +...
%o (PARI) {a(n)=local(A=x+x^2);for(i=1,n,A=x+subst(A,x,4*(A+x*O(x^n))^4)^(1/2));polcoeff(A,n)}
%Y Cf. A141200.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jun 19 2010