login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143154
E.g.f.: A(x) = x + log(1 - A(x))^2.
2
1, 2, 18, 262, 5320, 138728, 4419156, 166319424, 7221397848, 355312006392, 19537581248592, 1187337791554176, 79025863405440432, 5716937001401316000, 446654003380859659488, 37480492611898380241248
OFFSET
1,2
COMMENTS
Radius of convergence is r = (-1 + 6*A(r) - A(r)^2)/4 = 0.172815973872...
where A(r) = 1 - exp((A(r)-1)/2) = 0.2965325775...
FORMULA
E.g.f.: A(x) = Series_Reversion( x - log(1 - x)^2 ).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) log(1-x)^(2*n)/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (log(1-x)^(2*n)/x)/n! ).
E.g.f. derivative: A'(x) = (1 - A(x))/(1 - A(x) + 2*log(1 - A(x))).
a(n) = ((n-1)!*sum(k=0..n-1, binomial(n+k-1,n-1)*sum(j=0..k, (-1)^(n+j-1)*binomial(k,j)*sum(l=0..j, (binomial(j,l)*(2*(j-l))!*stirling1(n-l+j-1,2*(j-l)))/(n-l+j-1)!)))), n>0. - Vladimir Kruchinin, Feb 07 2012
a(n) ~ c*sqrt(4/(1+c)-2-2*c) * n^(n-1) / (exp(n) * (1-c*(2+c))^n), where c = LambertW(1/2) = 0.35173371124919... (see A202356). - Vaclav Kotesovec, Jan 24 2014
EXAMPLE
A(x) = x + 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
-log(1 - A(x)) = G(x) = the g.f. of A143155:
G(x) = x + 3*x^2/2! + 26*x^3/3! + 376*x^4/4! + 7614*x^5/5! + ...
G(x)^2 = 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
Related expansions:
A(x) = x + log(1-x)^2 + d/dx log(1-x)^4/2! + d^2/dx^2 log(1-x)^6/3! + d^3/dx^3 log(1-x)^8/4! + ...
log(A(x)/x) = log(1-x)^2/x + d/dx (log(1-x)^4/x)/2! + d^2/dx^2 (log(1-x)^6/x)/3! + d^3/dx^3 (log(1-x)^8/x)/4! + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x-Log[1-x]^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 24 2014 *)
PROG
(PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=x + log(1-A)^2); n!*polcoeff(A, n)}
(PARI) {a(n)=n!*polcoeff(serreverse(x-log(1-x+x*O(x^n))^2), n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(Maxima) a(n):=((n-1)!*sum(binomial(n+k-1, n-1)*sum((-1)^(n+j-1)*binomial(k, j)*sum((binomial(j, l)*(2*(j-l))!*stirling1(n-l+j-1, 2*(j-l)))/(n-l+j-1)!, l, 0, j), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Feb 07 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2008
STATUS
approved