login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143138
E.g.f.: A(x) = x + (exp(A(x)) - 1)^2.
3
1, 2, 18, 254, 5010, 126902, 3926538, 143539454, 6053432130, 289293272102, 15450565342938, 911991586990574, 58955877533817810, 4142488437549926102, 314346159031755778218, 25620077133245941688414
OFFSET
1,2
COMMENTS
Radius of convergence is r = log((2+sqrt(3))/2)/2 - (2-sqrt(3))/2 = 0.17793076... where A(r) = log((sqrt(3)+1)/2) = 0.311905358...
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = Series_Reversion( x - (exp(x) - 1)^2 ).
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^(2*n)/n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) ((exp(x)-1)^(2*n)/x)/n! ).
(4) A'(x) = 1/(1 + 2*exp(A(x)) - 2*exp(2*A(x)) ).
(5) A( log(1+x) - x^2 ) = log(1+x).
a(n) = (n-1)!*(sum(k=0..n-1, binomial(n+k-1,n-1)*sum(j=0..k, (-1)^(j)*binomial(k,j)*sum(l=0..j, (binomial(j,l)*(2*(j-l))!*(-1)^(l-j)*Stirling2(n-l+j-1,2*(j-l)))/(n-l+j-1)!)))), n>0. - Vladimir Kruchinin, Feb 08 2012
a(n) ~ sqrt((1-1/sqrt(3))/2) * n^(n-1) / (exp(n) * (sqrt(3)/2 + log((1+sqrt(3))/2) - 1)^(n-1/2)). - Vaclav Kotesovec, Dec 28 2013
EXAMPLE
A(x) = x + 2*x^2/2! + 18*x^3/3! + 254*x^4/4! + 5010*x^5/5! + 126902*x^6/6! + 3926538*x^7/7! + 143539454*x^8/8! + 6053432130*x^9/9! + 289293272102*x^10/10! + ...
exp(A(x)) - 1 = G(x) = the g.f. of A143139:
G(x) = x + 3*x^2/2! + 25*x^3/3! + 351*x^4/4! + 6901*x^5/5! + ...
G(x)^2 = 2*x^2/2! + 18*x^3/3! + 254*x^4/4! + 5010*x^5/5! + ...
Related expansions:
A(x) = x + (exp(x)-1)^2 + d/dx (exp(x)-1)^4/2! + d^2/dx^2 (exp(x)-1)^6/3! + d^3/dx^3 (exp(x)-1)^8/4! + ...
log(A(x)/x) = (exp(x)-1)^2/x + d/dx ((exp(x)-1)^4/x)/2! + d^2/dx^2 ((exp(x)-1)^6/x)/3! + d^3/dx^3 ((exp(x)-1)^8/x)/4! + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x-(E^x-1)^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2013 *)
PROG
(PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=x + (exp(A)-1)^2); n!*polcoeff(A, n)}
(PARI) {a(n)=n!*polcoeff(serreverse(x-(exp(x+x*O(x^n))-1)^2), n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (exp(x+x*O(x^n))-1)^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (exp(x+x*O(x^n))-1)^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(Maxima) a(n):=(n-1)!*(sum(binomial(n+k-1, n-1)*sum((-1)^(j)*binomial(k, j)*sum((binomial(j, l)*(2*(j-l))!*(-1)^(l-j)*stirling2(n-l+j-1, 2*(j-l)))/(n-l+j-1)!, l, 0, j), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Feb 08 2012 */
CROSSREFS
Cf. A143139.
Sequence in context: A276364 A109517 A213643 * A151362 A215362 A360974
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2008
STATUS
approved