login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143135
E.g.f. satisfies: A(x) = sin(x + A(x)^2) with A(0)=0.
4
1, 2, 11, 100, 1261, 20342, 399671, 9256840, 246907321, 7452534122, 251099460611, 9341422237420, 380293239870181, 16815919738248542, 802553031266952431, 41117164304824602640, 2250747364089063475441
OFFSET
1,2
COMMENTS
Radius of convergence of A(x) is r = Pi/4 - 1/2, with A(r) = sqrt(2)/2.
LINKS
FORMULA
E.g.f.: A(x) = sin(G(x)) where G(x) = x + A(x)^2 is the e.g.f. of A143134.
E.g.f. derivative: A'(x) = sqrt(1 - A(x)^2)/(1 - 2*A(x)*sqrt(1 - A(x)^2)).
a(n) ~ GAMMA(1/3) * 4^(n-1) * n^(n-5/6) / (3^(1/6) * sqrt(Pi) * exp(n) * (Pi-2)^(n-1/3)). - Vaclav Kotesovec, Jan 19 2014
EXAMPLE
A(x) = x + 2*x^2/2! + 11*x^3/3! + 100*x^4/4! + 1261*x^5/5! +...
A(x) = sin(G(x)) where G(x) = x + A(x)^2 is the e.g.f. of A143134:
G(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[-x^2 + ArcSin[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 19 2014 *)
PROG
(PARI) {a(n)=local(A=x); for(i=0, n, A=x + sin(A)^2); n!*polcoeff(sin(A), n)}
(PARI) {a(n)=n!*polcoeff(sin(serreverse(x-sin(x+x*O(x^n))^2)), n)}
CROSSREFS
Sequence in context: A003579 A282640 A099169 * A205806 A220433 A318007
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2008
STATUS
approved