login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360974
Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * A(x)^(2*n) / n!.
11
1, 2, 18, 260, 4890, 110124, 2844772, 82196424, 2613699450, 90450874860, 3379153837180, 135445714293720, 5796441493971284, 263784018974675416, 12721572505160772840, 648250134428292640272, 34809708051186914034730, 1965040180185473309749788, 116359823755204505172646204
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * A(x)^(2*n) / n!.
(2) A(x) = d/dx Series_Reversion(x - x^2*A(x)^2).
(3) B(x - x^2*A(x)^2) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * A(x)^(2*n) / n! ) is the g.f. of A360977.
(4) a(n) = (n+1) * A360977(n+1) for n >= 0.
a(n) ~ c * n! * n^alfa / LambertW(1/2)^n, where alfa = 2.498459235192... and c = 0.0920029178453... - Vaclav Kotesovec, Feb 28 2023
alfa = 5*LambertW(1/2) + 1/(1 + LambertW(1/2)). - Vaclav Kotesovec, Mar 13 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 260*x^3 + 4890*x^4 + 110124*x^5 + 2844772*x^6 + 82196424*x^7 + 2613699450*x^8 + ... + a(n)*x^n + ...
where
A(x) = 1 + (d/dx x^2*A(x)^2) + (d^2/dx^2 x^4*A(x)^4)/2! + (d^3/dx^3 x^6*A(x)^6)/3! + (d^4/dx^4 x^8*A(x)^8)/4! + (d^5/dx^5 x^10*A(x)^10)/5! + (d^6/dx^6 x^12*A(x)^12)/6! + ... + (d^n/dx^n x^(2*n)*A(x)^(2*n))/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^2*A(x)^2), which begins
B(x) = x + x^2 + 6*x^3 + 65*x^4 + 978*x^5 + 18354*x^6 + 406396*x^7 + 10274553*x^8 + 290411050*x^9 + ... + A360977(n)*x^n + ...
then A(x) = B'(x) and
B(x) = x * exp( x*A(x)^2 + (d/dx x^3*A(x)^4)/2! + (d^2/dx^2 x^5*A(x)^6)/3! + (d^3/dx^3 x^7*A(x)^8)/4! + (d^4/dx^4 x^9*A(x)^10)/5! + (d^5/dx^5 x^11*A(x)^12)/6! + ... + (d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^(2*n))/n! + ... ).
PROG
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(2*m)*A^(2*m)/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Using series reversion (faster) */
{a(n) = my(A=1); for(i=1, n, A = deriv( serreverse(x - x^2*A^2 +O(x^(n+2))))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 27 2023
STATUS
approved