login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151362
Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2*n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, -1), (1, 0), (1, 1)}.
1
1, 2, 18, 255, 4522, 91896, 2047452, 48748986, 1220457810, 31779889284, 854110511124, 23559266827278, 664125694509564, 19070108145820400, 556345776173277960, 16455889048642607295, 492658546882981692690, 14907686709710614053300, 455413194094843994648100
OFFSET
0,2
LINKS
Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner, Composition schemes: q-enumerations and phase transitions in Gibbs models, 2024. See p. 8.
Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
FORMULA
a(n) = hypergeom([-n, 1/2-n], [2], 4)*binomial(2*n, n)/(n+1). - Robert Israel, Aug 14 2014
a(n) = M(2n)*C(n), where M(n) denotes Motzkin numbers, A001006, and C(n) the Catalan numbers A000108. Proof via a bijection of a pair of Dyck excursion and Motzkin excursion. - Markus Kuba, May 05 2022
MAPLE
seq(add(binomial(2*n, 2*k)*binomial(2*k, k)/(k+1), k=0..n)*binomial(2*n, n)/(n+1), n=0..18); # Mark van Hoeij, May 12 2013
S := proc(a) global x; series(a, x=0, 20) end:
ogf := S(int(x^(-1/2)*int(S(x^(-1/2)*hypergeom([3/4, 5/4], [2], 64*x/(12*x+1)^2)/(12*x+1)^(3/2)), x), x)/(2*x)); # Mark van Hoeij, Aug 14 2014
# third Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
(4*n*(4*n-1)*(2*n-1)*(10*n^2-5*n-3) *a(n-1)
-36*(n-1)*(2*n-1)*(4*n+1)*(-3+2*n)^2 *a(n-2))/
(n*(1+2*n)*(4*n-3)*(n+1)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}]
CROSSREFS
Sequence in context: A109517 A213643 A143138 * A215362 A360974 A350461
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved