login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213643
E.g.f. satisfies: A(x) = x + A(x)^2*exp(A(x)).
9
1, 2, 18, 252, 4940, 124350, 3823722, 138915560, 5822192952, 276522143130, 14677209803630, 860990013672492, 55315008281020644, 3862656545279925302, 291301089508829138130, 23595204076694940812880, 2042970533426395737658352, 188298566037963463789282482
OFFSET
1,2
LINKS
FORMULA
E.g.f.: A(x) = log(G(x)) where G(x) = exp(x*Catalan(x*G(x))) is the e.g.f. of A161629, and Catalan(x) = (1-sqrt(1-4*x))/(2*x).
E.g.f.: Series_Reversion(x - x^2*exp(x)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n) / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n-1) / n! ).
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^(n+1) / (1 - n*x)^(2*n+1).
a(n) = Sum_{k=0..n-1} k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!.
a(n) = n*A213644(n-1).
Limit n->infinity (a(n)/n!)^(1/n) = r*(1+r)/(1-r) = 5.5854662015218413..., where r = 0.7603592340333989... is the root of the equation (1-r^2)/r^2 = exp((r-1)/r). - Vaclav Kotesovec, Jul 13 2013
a(n) ~ (1-r) * n^(n-1) * (r*(1+r)/(1-r))^n / (sqrt(r*(1+2*r-r^2))*exp(n)). - Vaclav Kotesovec, Dec 28 2013
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...
where A(x - x^2*exp(x)) = x and A(x) = x + A(x)^2*exp(A(x)).
Related expansions:
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 168*x^4/4! + 3240*x^5/5! + 80880*x^6/6! +...
A(x) = x*Catalan(x*G(x)) where G(x) = exp(A(x)):
exp(A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! + 171421*x^6/6! +..., which is the e.g.f. of A161629.
A(x) = x + exp(x)*x^2 + d/dx exp(2*x)*x^4/2! + d^2/dx^2 exp(3*x)*x^6/3! + d^3/dx^3 exp(4*x)*x^8/4! +...
log(A(x)/x) = exp(x)*x + d/dx exp(2*x)*x^3/2! + d^2/dx^2 exp(3*x)*x^5/3! + d^3/dx^3 exp(4*x)*x^7/4! +...
Ordinary Generating Function:
O.g.f.: x + 2*x^2 + 18*x^3 + 252*x^4 + 4940*x^5 + 124350*x^6 +...
O.g.f.: x + 2*x^2/(1-x)^3 + 6*2!*x^3/(1-2*x)^5 + 20*3!*x^4/(1-3*x)^7 + 70*4!*x^5/(1-4*x)^9 + 252*5!*x^6/(1-5*x)^11 +...+ (2*n)!/n!*x^(n+1)/(1-n*x)^(2*n+1) +...
MAPLE
a:= n-> n!*coeff(series(RootOf(A=x+A^2*exp(A), A), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 18 2013
MATHEMATICA
Flatten[{1, Table[Sum[k^(n-k-1)/(n-k-1)!*(n+k-1)!/k!, {k, 0, n-1}], {n, 2, 20}]}] (* Vaclav Kotesovec, Jul 13 2013 *)
PROG
(PARI) {a(n)=sum(k=0, n-1, k^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )}
(PARI) {a(n)=n!*polcoeff(serreverse(x-x^2*exp(x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
(PARI) /* O.g.f.: */
{a(n)=polcoeff(sum(m=0, n, (2*m)!/m!*x^(m+1)/(1-m*x+x*O(x^n))^(2*m+1)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2012
STATUS
approved