OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies:
(1) A(x + log(1-x^2)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n/x / n! ).
a(n) = n*A213641(n-1).
a(n) ~ sqrt(1-1/sqrt(2)) * n^(n-1) / (exp(n) * (sqrt(2) -1 + log(2*(sqrt(2)-1)))^(n-1/2)). - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
Related series:
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1800*x^5/5! + 35280*x^6/6! +...
-log(1-A(x)^2) = 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x + Log[1-x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x+log(1-x^2 +x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m)/m!); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2012
STATUS
approved