login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200319
E.g.f. satisfies: A(x) = x-1 + exp(A(x)^2).
3
1, 2, 12, 132, 2040, 40440, 979440, 28034160, 925858080, 34654465440, 1449705660480, 67029745527360, 3394417068282240, 186842736763562880, 11107390768144070400, 709223357051739129600, 48408150749346010022400, 3517279496138031162739200, 271050342684747077612160000
OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion(1+x - exp(x^2)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n/x / n! ).
a(n) ~ (c/2)^(1/4) * n^(n-1) / (sqrt(1+c) * exp(n) * (1+sqrt(c/2)-1/sqrt(2*c))^(n-1/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
where A(1+x - exp(x^2)) = x and A(x) = x-1 + exp(A(x)^2).
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[1 - E^x^2 + x, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(1+x-exp(x^2+x^2*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m)/m!); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved