login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200317 E.g.f. satisfies: A(x) = 1+x - cos(A(x)). 3
1, 1, 3, 14, 90, 736, 7308, 85364, 1146660, 17411296, 294880608, 5510730224, 112638576960, 2499645858256, 59850581734128, 1537891759461344, 42211161452391840, 1232537502720495616, 38148561442665067968, 1247578217573259535424, 42985394533206479112000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Radius of convergence of e.g.f. A(x) is r = Pi/2-1 = 0.570796... where A(r) = Pi/2.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..410

V. Kotesovec, Asymptotic of implicit functions if Fww = 0, Jan 19 2014

FORMULA

E.g.f. satisfies:

(1) A(x) = Series_Reversion(x-1 + cos(x)).

(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (1-cos(x))^(2*n) / n!.

(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1-cos(x))^(2*n)/x / n! ).

a(n) = ((n-1)!*sum(k=1..n-1, C(n+k-1,n-1)* sum(j=1..k, C(k,j)* ((sum(l=0..j-1, (C(j,l)* ((-1)^(n-l+j-1)+1) *sum(r=1..j-l, (C(j-l,r)*(-1)^(-r+(n-l+j-1)/2-l)* sum(i=0..(r-1)/2, (r-2*i)^(n-l+j-1)*C(r,i)))/2^r))/(n-l+j-1)!)))))), n>1, a(1)=1. [From Vladimir Kruchinin, Feb 20 2012]

a(n) ~ GAMMA(1/3) * n^(n-5/6) / (6^(1/6) * sqrt(Pi) * exp(n) * (Pi/2-1)^(n-1/3)). - Vaclav Kotesovec, Jan 18 2014

EXAMPLE

E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 14*x^4/4! + 90*x^5/5! +...

where A(x-1 + cos(x)) = x and A(x) = 1+x - cos(A(x)).

The e.g.f. satisfies:

A(x) = x + (1-cos(x)) + d/dx (1-cos(x))^2/2! + d^2/dx^2 (1-cos(x))^3/3! + d^3/dx^3 (1-cos(x))^4/4! +...

as well as the logarithmic series:

log(A(x)/x) = (1-cos(x))/x + d/dx (1-cos(x))^2/x/2! - d^2/dx^2 (1-cos(x))^3/x/3! + d^3/dx^3 (1-cos(x))^4/x/4! +...

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[x-1 + Cos[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 18 2014 *)

PROG

(PARI) {a(n)=n!*polcoeff(serreverse(x-1+cos(x+x^2*O(x^n))), n)}

for(n=1, 21, print1(a(n), ", "))

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, (1-cos(x+x*O(x^n)))^m)/m!)+x*O(x^n)); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, (1-cos(x+x*O(x^n)))^m/x)/m!)+x*O(x^n))); n!*polcoeff(A, n)}

(Maxima) a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1, n-1)* sum(binomial(k, j)*((sum((binomial(j, l)*((-1)^(n-l+j-1)+1)*sum((binomial(j-l, r) *(-1)^(-r+(n-l+j-1)/2-l)*sum((r-2*i)^(n-l+j-1)*binomial(r, i), i, 0, (r-1)/2))/2^r, r, 1, j-l))/(n-l+j-1)!, l, 0, j-1))), j, 1, k), k, 1, n-1)); [From Vladimir Kruchinin, Feb 20 2012]

CROSSREFS

Cf. A200318.

Sequence in context: A007549 A081005 A074518 * A202295 A088789 A202293

Adjacent sequences:  A200314 A200315 A200316 * A200318 A200319 A200320

KEYWORD

nonn,nice

AUTHOR

Paul D. Hanna, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 02:41 EST 2021. Contains 349426 sequences. (Running on oeis4.)