login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350461
Number of ways to choose a subset of size n from [2n] and arrange its elements into a set of lists.
2
1, 2, 18, 260, 5110, 126252, 3743124, 129156456, 5075323110, 223484406860, 10889720208796, 581327564001912, 33721264023340348, 2111076358455927800, 141812884019465389800, 10171645727323281955920, 775654703427461395949190, 62649431136582816113115660
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(2*n,n) * A000262(n) = A000984(n) * A000262(n).
a(n) = A129652(2n,n).
EXAMPLE
a(2) = 18: 12, 21, 1|2, 13, 31, 1|3, 14, 41, 1|4, 23, 32, 2|3, 24, 42, 2|4, 34, 43, 3|4.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> binomial(2*n, n)*b(n):
seq(a(n), n=0..20);
MATHEMATICA
a[n_] := If[n==0, 1, ((2n)!/n!) Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 14 2022, from 1st formula *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 22 2022
STATUS
approved