login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350463
Table read by rows, T(n, k) = Y(2*n, k, Z(2*n - k)) where Y are the partial Bell polynomials and Z(m) is the list [A126869(j), j=-1..2*m].
1
1, 0, 1, 0, 2, 3, 0, 6, 30, 15, 0, 20, 308, 420, 105, 0, 70, 3420, 10080, 6300, 945, 0, 252, 41052, 242220, 291060, 103950, 10395, 0, 924, 523432, 6048042, 12672660, 8198190, 1891890, 135135, 0, 3432, 6965520, 158012400, 552071520, 581981400, 234594360, 37837800, 2027025
OFFSET
0,5
EXAMPLE
[0] 1;
[1] 0, 1;
[2] 0, 2, 3;
[3] 0, 6, 30, 15;
[4] 0, 20, 308, 420, 105;
[5] 0, 70, 3420, 10080, 6300, 945;
[6] 0, 252, 41052, 242220, 291060, 103950, 10395;
[7] 0, 924, 523432, 6048042, 12672660, 8198190, 1891890, 135135;
MATHEMATICA
Z[n_] := Flatten[Table[{0, Binomial[2 j, j]}, {j, 0, n}]];
T[n_, k_] := BellY[2 n, k, Z[2 n - k]];
Table[T[n, k], {n, 0, 6}, {k, 0, n}] // TableForm
CROSSREFS
Cf. A000984 (column 1), A001147 (main diagonal).
Sequence in context: A349776 A305622 A269940 * A341339 A084257 A365803
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 12 2022
STATUS
approved