Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 13 2022 07:30:26
%S 1,0,1,0,2,3,0,6,30,15,0,20,308,420,105,0,70,3420,10080,6300,945,0,
%T 252,41052,242220,291060,103950,10395,0,924,523432,6048042,12672660,
%U 8198190,1891890,135135,0,3432,6965520,158012400,552071520,581981400,234594360,37837800,2027025
%N Table read by rows, T(n, k) = Y(2*n, k, Z(2*n - k)) where Y are the partial Bell polynomials and Z(m) is the list [A126869(j), j=-1..2*m].
%e [0] 1;
%e [1] 0, 1;
%e [2] 0, 2, 3;
%e [3] 0, 6, 30, 15;
%e [4] 0, 20, 308, 420, 105;
%e [5] 0, 70, 3420, 10080, 6300, 945;
%e [6] 0, 252, 41052, 242220, 291060, 103950, 10395;
%e [7] 0, 924, 523432, 6048042, 12672660, 8198190, 1891890, 135135;
%t Z[n_] := Flatten[Table[{0, Binomial[2 j, j]}, {j, 0, n}]];
%t T[n_, k_] := BellY[2 n, k, Z[2 n - k]];
%t Table[T[n, k], {n, 0, 6}, {k, 0, n}] // TableForm
%Y Cf. A000984 (column 1), A001147 (main diagonal).
%Y Cf. A350462, A350291.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Mar 12 2022