login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092809
Expansion of (1+x-x^2) / ((1-x^2)*(1-4*x^2)).
1
1, 1, 4, 5, 16, 21, 64, 85, 256, 341, 1024, 1365, 4096, 5461, 16384, 21845, 65536, 87381, 262144, 349525, 1048576, 1398101, 4194304, 5592405, 16777216, 22369621, 67108864, 89478485, 268435456, 357913941, 1073741824, 1431655765, 4294967296, 5726623061
OFFSET
0,3
COMMENTS
Partial sums of A092808.
Apply matrix A133080 to A001045(n+1). - Paul Barry, Oct 08 2009
FORMULA
a(n) = 5*2^n/6+(-2)^n/6+(-1)^n/6-1/6.
a(2*n) = 4^n = A000302(n).
a(2*n+1) = (4*4^n-1)/3 = A002450(n+1).
From Colin Barker, Sep 09 2016: (Start)
a(n) = 5*a(n-2)-4*a(n-4) for n>3.
G.f.: (1+x-x^2) / ((1-x)*(1+x)*(1-2*x)*(1+2*x))
(End)
PROG
(PARI) Vec((1+x-x^2)/((1-x)*(1+x)*(1-2*x)*(1+2*x)) + O(x^40)) \\ Colin Barker, Sep 09 2016
(PARI) a(n) = if(n%2, 2, 3)<<n \ 3 \\ Charles R Greathouse IV, Sep 09 2016
CROSSREFS
Cf. A001045.
Sequence in context: A025617 A227855 A078581 * A250254 A293344 A369780
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 10 2004
STATUS
approved