login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293344
a(n) = a(n-1) + a(n-3) + 2*a(n-5) - a(n-8) - a(n-10), n > 10.
3
1, 1, 4, 5, 16, 22, 29, 45, 76, 126, 210, 338, 534, 869, 1414, 2301, 3741, 6052, 9805, 15910, 25820, 41900, 67966, 110226, 178791, 290044, 470524, 763285, 1238156, 2008452, 3258039, 5285117, 8573382, 13907463, 22560169, 36596300, 59365317, 96300513
OFFSET
1,3
COMMENTS
For n >= 5, gives the dimensions of a certain class of error-correcting codes. [Cascudo, Theorem 6.2]
LINKS
Ignacio Cascudo, On squares of cyclic codes, arXiv:1703.01267 [cs.IT], 2017.
FORMULA
G.f.: x*(1 + 3*x^2 + 10*x^4 - 8*x^7 - 10*x^9) / (1 - x - x^3 - 2*x^5 + x^8 + x^10). - Colin Barker, Feb 24 2019
MATHEMATICA
a = DifferenceRoot[Function[{a, n}, {a[n] + a[n+2] - 2*a[n+5] - a[n+7] - a[n+9] + a[n+10] == 0, a[1] == 1, a[2] == 1, a[3] == 4, a[4] == 5, a[5] == 16, a[6] == 22, a[7] == 29, a[8] == 45, a[9] == 76, a[10] == 126}]];
Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Feb 24 2019 *)
PROG
(PARI) Vec(x*(1 + 3*x^2 + 10*x^4 - 8*x^7 - 10*x^9) / (1 - x - x^3 - 2*x^5 + x^8 + x^10) + O(x^40)) \\ Colin Barker, Feb 24 2019
CROSSREFS
Sequence in context: A078581 A092809 A250254 * A369780 A058622 A196021
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Oct 12 2017
STATUS
approved