login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133080
Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones.
29
1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
1,1
COMMENTS
A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
Inverse of A133080: subdiagonal changes to (-1, 0, -1, 0, -1, ...); main diagonal unchanged.
A133080^(-1) * [1,2,3,...] = A093178: (1, 1, 3, 1, 5, 1, 7, 1, 9, ...).
In A133081, diagonal terms are switched with subdiagonal terms.
FORMULA
Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - R. J. Mathar, Feb 14 2015
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 1;
...
MAPLE
A133080 := proc(n, k)
if n = k then
1;
elif k=n-1 and type(n, even) then
1;
else
0 ;
end if;
end proc: # R. J. Mathar, Jun 20 2015
MATHEMATICA
T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
PROG
(PARI) T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ Michel Marcus, Feb 13 2014
(PARI) firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ; res} \\ David A. Corneth, Oct 21 2017
CROSSREFS
Cf. A000034 (row sums), A114753, A093178, A133081.
Sequence in context: A303340 A115512 A115513 * A316917 A133985 A143062
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Sep 08 2007
STATUS
approved