OFFSET
1,1
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - R. J. Mathar, Feb 14 2015
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 1;
...
MAPLE
A133080 := proc(n, k)
if n = k then
1;
elif k=n-1 and type(n, even) then
1;
else
0 ;
end if;
end proc: # R. J. Mathar, Jun 20 2015
MATHEMATICA
T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
PROG
(PARI) T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ Michel Marcus, Feb 13 2014
(PARI) firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ; res} \\ David A. Corneth, Oct 21 2017
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Sep 08 2007
STATUS
approved