login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303340
Binary expansion of constant: B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
2
1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0
OFFSET
0
FORMULA
This constant may be defined by the following expressions.
(1) B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
(2) B = Sum_{n>=1} (2^n - 1)^(n-1) / 2^(n^2).
(3) B = Sum_{n>=1} A303506(n)/2^n where A303506(n) = Sum_{d|n} binomial(n/d-1, d-1) * (-1)^(d-1) for n>=1.
EXAMPLE
In base 2: B = 0.11100100010010111111111100111101001100001001001100...
In base 10: B = 0.891784622610953349715890136060239421022216970366139...
This constant equals the sum of the following infinite series.
(1) B = 1 - 1/3^2 + 1/7^3 - 1/15^4 + 1/31^5 - 1/63^6 + 1/127^7 - 1/255^8 + 1/511^9 - 1/1023^10 + 1/2047^11 - 1/4095^12 + 1/8191^13 - 1/16383^14 + ...
Also,
(2) B = 1/2 + 3/2^4 + 7^2/2^9 + 15^3/2^16 + 31^4/2^25 + 63^5/2^36 + 127^6/2^49 + 255^7/2^64 + 511^8/2^81 + 1023^9/2^100 + 2047^10/2^121 + 4095^11/2^144 + ...
Expressed in terms of powers of 1/2, we have
(3) B = 1/2 + 1/2^2 + 1/2^3 + 0/2^4 + 1/2^5 - 1/2^6 + 1/2^7 - 2/2^8 + 2/2^9 - 3/2^10 + 1/2^11 - 1/2^12 + 1/2^13 - 5/2^14 + 7/2^15 - 7/2^16 + 1/2^17 + 3/2^18 + 1/2^19 - 12/2^20 + 16/2^21 - 9/2^22 + ... + A303506(n)/2^n + ...
The binary expansion of this constant begins:
B = 0.11100100010010111111111100111101001100001001001100\
11111010000100110110010100000011000111010001001111\
01010101000100000011111100001011011110100001111110\
00011100101101000101010111011000011001000010101000\
01001101100101010110001001110110001101010000111011\
11110111011111000101010011100001111110011111011011\
00001001000101000101100000000010101111100010001111\
10100001111001110011001100011110110001010001100100\
10101000101110001000111001010110110111101010011011\
00100111110000000001101111110010000010110001111101\
00101101000000110001000010100011111001100010100001\
10100000001011000111111010111100100110100101011101\
01010000001001000100000011101111110011001010001011\
00000111011010111010100000110110111111111100111001\
11011011110001111100010010011111000010000100001011\
00011101110101100100011001101110011001111111001001\
10011101110010111110111111010110101110001110001000\
00111110001010100101111000110010101011000101000111\
10111001011111000000101000111001001010100100010000\
00111111111001110011101011111110010000000010111100\
11111110000100100011101010110100100010001100010111\
10000110111011001111011000100001101110100100001000\
00010000010111011111011000000011100110100100111111\
00110000010111110010110011001111010110011001000101\
11110001000111111001111001100001001100000101010000\
01100100111000100011010000101000100101100100111010\
00100111111011110010101110000101010110110101000010\
10111001001110101101100010101110010110011010100100\
00001110111111000000101111000111000110110111111111\
10000010011101001001010101000001001010000010101111\
11000100010111110001011011101100011001011000101101\
00010010001010000011110101111000110100001101010111\
00000111111001000011000100111101110101001111110110\
01000111010110100010100010101000110000100101001001\
11111101110111001100011111111100100000011110001100\
01111011011100011001010100110010110010011100111001\
11011100010110001100010001101110111101100110111111\
10011110000010100100100010010011011110110010111100\
00110101110110110110100001110011110111110001101110\
11010011010111010110001000000100101110011010110010...
MATHEMATICA
bits = 200; B = NSum[(-1)^(n-1)/(2^n-1)^n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> Ceiling[Log[10, 2]*bits]]; RealDigits[B, 2, bits][[1]] (* Jean-François Alcover, Apr 25 2018 *)
CROSSREFS
Cf. A302765 (decimal expansion), A303506.
Sequence in context: A351114 A128190 A128189 * A115512 A115513 A133080
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Apr 24 2018
STATUS
approved