Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 13 2022 02:26:48
%S 1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,
%T 1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,
%U 0,0,0,0,0,0,0,0,1,1
%N Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones.
%C A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
%C Inverse of A133080: subdiagonal changes to (-1, 0, -1, 0, -1, ...); main diagonal unchanged.
%C A133080^(-1) * [1,2,3,...] = A093178: (1, 1, 3, 1, 5, 1, 7, 1, 9, ...).
%C In A133081, diagonal terms are switched with subdiagonal terms.
%H G. C. Greubel, <a href="/A133080/b133080.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
%F Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
%F T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - _R. J. Mathar_, Feb 14 2015
%e First few rows of the triangle are:
%e 1;
%e 1, 1;
%e 0, 0, 1;
%e 0, 0, 1, 1;
%e 0, 0, 0, 0, 1;
%e 0, 0, 0, 0, 1, 1;
%e 0, 0, 0, 0, 0, 0, 1;
%e ...
%p A133080 := proc(n,k)
%p if n = k then
%p 1;
%p elif k=n-1 and type(n,even) then
%p 1;
%p else
%p 0 ;
%p end if;
%p end proc: # _R. J. Mathar_, Jun 20 2015
%t T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]];
%t Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* _G. C. Greubel_, Oct 21 2017 *)
%o (PARI) T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ _Michel Marcus_, Feb 13 2014
%o (PARI) firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ;res} \\ _David A. Corneth_, Oct 21 2017
%Y Cf. A000034 (row sums), A114753, A093178, A133081.
%K nonn,easy,tabl
%O 1,1
%A _Gary W. Adamson_, Sep 08 2007