The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133079 Expansion of f(x)^3 - 3 * x * f(x^9)^3 in powers of x^3 where f() is a Ramanujan theta function. 5
 1, -5, -7, 0, 0, 11, 0, -13, 0, 0, 0, 0, 17, 0, 0, 19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, -29, 0, 0, 0, 0, -31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, -37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). There is a plus sign on the left side and the first and third plus signs on the right side which should be minuses in Ramanujan's equation. REFERENCES B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 357, Entry 5, Eq. (5.1) S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 266. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(x) * a(-x) in powers of x where f() is a Ramanujan theta function and a() is a cubic AGM theta function. G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = -192 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A204850. a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 5, 7 (mod 8). G.f.: Sum_{k in Z} Kronecker( 2, 2*k + 1) * (6*k + 1) * x^(k * (3*k + 1)/2). a(5*n + 3) = a(5*n + 4) = 0. a(25*n + 1) = -5 * a(n). a(n) = (-1)^n * A116916(n). a(n) = A133089(3*n) = A204850(3*n). - Michael Somos, Jun 19 2015 EXAMPLE G.f. = 1 - 5*x - 7*x^2 + 11*x^5 - 13*x^7 + 17*x^12 + 19*x^15 - 23*x^22 + ... G.f. = q - 5*q^25 - 7*q^49 + 11*q^121 - 13*q^169 + 17*q^289 + 19*q^361 - ... MATHEMATICA a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m (-1)^Boole[Mod[m, 8] > 4], 0]]; (* Michael Somos, Jun 19 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 - 3 x QPochhammer[ -x^9]^3, {x, 0, 3 n}]; (* Michael Somos, Jun 19 2015 *) PROG (PARI) {a(n) = if( issquare( 24*n + 1, &n), n * (-1) ^ (n%8 > 4), 0)}; (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 24*n + 1; A = factor(n); prod(k = 1, matsize(A) [1], [p, e] = A[k, ]; if( p < 5, 0, p *= kronecker( -2, p); if( e%2, 0, p^(e/2) ))))}; (PARI) {a(n) = my(A); if( n<0, 0, n *= 3; A = x * O(x^n); polcoeff( eta(-x + A)^3 - 3 * x * eta(-x^9 + A)^3, n))}; CROSSREFS Cf. A116916, A133089, A204850. Sequence in context: A269588 A048658 A001111 * A116916 A080332 A134756 Adjacent sequences:  A133076 A133077 A133078 * A133080 A133081 A133082 KEYWORD sign AUTHOR Michael Somos, Sep 08 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 10:15 EDT 2021. Contains 343880 sequences. (Running on oeis4.)