login
A080332
G.f.: Product_{n>0} (1 - x^n)^3 * (1 - x^(2*n - 1))^2 = Sum_{n in Z} (6*n + 1) * x^(n*(3*n + 1)/2).
6
1, -5, 7, 0, 0, -11, 0, 13, 0, 0, 0, 0, -17, 0, 0, 19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, -29, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. M. Borwein, P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 306.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.6); p. 84, Eq. (32.63).
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 266. MR0099904 (20 #6340)
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: theta_4(x)^2 * (Sum_{n in Z} (-1)^n * x^(n*(3*n + 1)/2)).
Expansion of f(-x)^2 * phi(x) = f(-x^2) * phi(-x^2)^2 in powers of x^2 where phi(), f() are Ramanujan theta functions. - Michael Somos, Feb 18 2003
Expansion of q^(-1/24) * eta(q)^5 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [-5, -3, ...]. - Michael Somos, Sep 09 2007
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2* p^(e/2) if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 * (-p)^(e/2) if p == 5 (mod 6). - Michael Somos, May 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 32^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113277. - Michael Somos, Feb 18 2003
a(5*n + 3) = a(5*n + 4) = a(7*n + 3) = a(7*n + 4) = a(7*n + 6) = 0. a(25*n + 1) = -5 * a(n). - Michael Somos, Feb 18 2003
EXAMPLE
G.f. = 1 - 5*x + 7*x^2 - 11*x^5 + 13*x^7 - 17*x^12 + 19*x^15 - 23*x^22 + ...
G.f. = q - 5*q^25 + 7*q^49 - 11*q^121 + 13*q^169 - 17*q^289 + 19*q^361 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^5 / QPochhammer[ x^2]^2, {x, 0, n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] EllipticTheta[ 4, 0, x]^2, {x, 0, n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 EllipticTheta[ 3, 0, x], {x, 0, 2 n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := With[{m = Sqrt[24 n + 1]}, If[ IntegerQ[ m], m KroneckerSymbol[ -3, m], 0]]; (* Michael Somos, Mar 11 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%6 == 1, p, -p)^(e\2))))}; /* Michael Somos, May 26 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^2 + A)^2, n))};
(PARI) {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -3, n), 0)};
CROSSREFS
Sequence in context: A355022 A133079 A116916 * A134756 A178902 A176713
KEYWORD
sign,easy
AUTHOR
Michael Somos, Feb 18 2003
EXTENSIONS
Definition changed by N. J. A. Sloane, Aug 14 2007
STATUS
approved