OFFSET
0,2
COMMENTS
REFERENCES
J. M. Borwein, P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 306.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.6); p. 84, Eq. (32.63).
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 266. MR0099904 (20 #6340)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: theta_4(x)^2 * (Sum_{n in Z} (-1)^n * x^(n*(3*n + 1)/2)).
Expansion of f(-x)^2 * phi(x) = f(-x^2) * phi(-x^2)^2 in powers of x^2 where phi(), f() are Ramanujan theta functions. - Michael Somos, Feb 18 2003
Expansion of q^(-1/24) * eta(q)^5 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [-5, -3, ...]. - Michael Somos, Sep 09 2007
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2* p^(e/2) if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 * (-p)^(e/2) if p == 5 (mod 6). - Michael Somos, May 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 32^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113277. - Michael Somos, Feb 18 2003
a(5*n + 3) = a(5*n + 4) = a(7*n + 3) = a(7*n + 4) = a(7*n + 6) = 0. a(25*n + 1) = -5 * a(n). - Michael Somos, Feb 18 2003
EXAMPLE
G.f. = 1 - 5*x + 7*x^2 - 11*x^5 + 13*x^7 - 17*x^12 + 19*x^15 - 23*x^22 + ...
G.f. = q - 5*q^25 + 7*q^49 - 11*q^121 + 13*q^169 - 17*q^289 + 19*q^361 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^5 / QPochhammer[ x^2]^2, {x, 0, n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] EllipticTheta[ 4, 0, x]^2, {x, 0, n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 EllipticTheta[ 3, 0, x], {x, 0, 2 n}]; (* Michael Somos, Mar 11 2015 *)
a[ n_] := With[{m = Sqrt[24 n + 1]}, If[ IntegerQ[ m], m KroneckerSymbol[ -3, m], 0]]; (* Michael Somos, Mar 11 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%6 == 1, p, -p)^(e\2))))}; /* Michael Somos, May 26 2005 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^2 + A)^2, n))};
(PARI) {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -3, n), 0)};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Feb 18 2003
EXTENSIONS
Definition changed by N. J. A. Sloane, Aug 14 2007
STATUS
approved