login
A080333
Partial sums of A080278.
4
1, 2, 6, 7, 8, 12, 13, 14, 27, 28, 29, 33, 34, 35, 39, 40, 41, 54, 55, 56, 60, 61, 62, 66, 67, 68, 108, 109, 110, 114, 115, 116, 120, 121, 122, 135, 136, 137, 141, 142, 143, 147, 148, 149, 162, 163, 164, 168, 169, 170, 174, 175, 176, 216, 217, 218, 222, 223, 224, 228, 229
OFFSET
1,2
LINKS
B. Dearden, J. Iiams, and J. Metzger, A Function Related to the Rumor Sequence Conjecture , J. Int. Seq. 14 (2011) # 11.2.3.
FORMULA
a(n) = Sum_{k=0..log_3(n)} 3^k*floor(n/3^k).
a(3^k) = (k+1)*3^k.
a(n) is conjectured to be asymptotic to n*log(n)/log(3). - Klaus Brockhaus, Mar 23 2003 [This follows from the asymptotics of A333979. - Pontus von Brömssen, Sep 06 2020]
a(n) = n + 3*a(floor(n/3)), a(0)=0. - Vladeta Jovovic, Aug 06 2003
G.f.: (1/(1 - x))*Sum_{k>=0} 3^k*x^(3^k)/(1 - x^(3^k)). - Ilya Gutkovskiy, Mar 15 2018
a(n) = A333979(3*n,3). - Pontus von Brömssen, Sep 06 2020
PROG
(PARI) a(n) = fromdigits(Vec(Pol(digits(3*n, 3))'), 3); \\ Kevin Ryde, Apr 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 19 2003
STATUS
approved