|
|
A080278
|
|
a(n) = (3^(v_3(n) + 1) - 1)/2, where v_3(n) = highest power of 3 dividing n = A007949(n).
|
|
12
|
|
|
1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 40, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 40, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 121, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Denominator of the quotient sigma(3*n)/sigma(n). - Labos Elemer, Nov 04 2003
a(n) = b/(3*(c+d)) where b, c, d are the sums of the divisors of 3*n that are congruent respectively to 0, 1 and 2 mod 3. - Michel Lagneau, Nov 05 2012
|
|
LINKS
|
Table of n, a(n) for n=1..98.
Klaus Brockhaus, Illustration of A080278 and A080333
|
|
FORMULA
|
G.f.: Sum_{k>=0} 3^k*x^(3^k)/(1-x^(3^k)). - Ralf Stephan, Jun 15 2003
L.g.f.: -log(Product_{k>=0} (1 - x^(3^k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 15 2018
|
|
EXAMPLE
|
a(6) = 4 because the divisors of 3*6 = 18 are {1, 2, 3, 6, 9, 18} => b = 3 + 6 + 9 + 18 = 36, c = 1, d = 2, hence a(6) = b/(3*(c+d)) = 36/(3*(1+2)) = 36/9 = 4. - Michel Lagneau, Nov 05 2012
|
|
MAPLE
|
A080278 := n->(3^(A007949(n)+1)-1)/2;
|
|
MATHEMATICA
|
Table[Denominator[DivisorSigma[1, 3*n]/DivisorSigma[1, n]], {n, 1, 128}]
|
|
PROG
|
(PARI) a(n) = denominator(sigma(3*n)/sigma(n)); \\ Michel Marcus, Dec 15 2019
|
|
CROSSREFS
|
Cf. A007949, A080333, A088838 (numerator of sigma(3*n)/sigma(n)).
Sequence in context: A097322 A177023 A214333 * A258328 A070085 A131776
Adjacent sequences: A080275 A080276 A080277 * A080279 A080280 A080281
|
|
KEYWORD
|
nonn,mult,frac
|
|
AUTHOR
|
N. J. A. Sloane, Mar 19 2003
|
|
STATUS
|
approved
|
|
|
|