login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178902
Expansion of q^(-1/24) * eta(q^2)^13 / (eta(q)^5 * eta(q^4)^5) in powers of q.
1
1, 5, 7, 0, 0, 11, 0, -13, 0, 0, 0, 0, -17, 0, 0, -19, 0, 0, 0, 0, 0, 0, -23, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, -37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, -43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -47, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
G. Köhler, Some eta-identities arising from theta series, Math. Scand. 66 (1990), 147-154.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(q) * phi(q)^2 = f(q)^3 * chi(q)^2 = phi(q)^3 / chi(q) in powers of q where f(), phi(), chi() are Ramanujan theta functions.
Euler transform of period 4 sequence [5, -8, 5, -3, ...].
a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(3/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 + x^(2*k - 1))^5 = Sum_{k>0} Kronecker( -6, k) * k * x^((k^2 - 1) / 24) = Sum_{k in Z} (6*k + 1) * (-1)^floor(k/2) * x^(k * (3*k + 1) / 2).
a(n) = (-1)^n * A080332(n).
EXAMPLE
G.f. = 1 + 5*x + 7*x^2 + 11*x^5 - 13*x^7 - 17*x^12 - 19*x^15 - 23*x^22 + ...
G.f. = q + 5*q^25 + 7*q^49 + 11*q^121 - 13*q^169 - 17*q^289 - 19*q^361 + ...
MATHEMATICA
A178902[n_] := SeriesCoefficient[(QPochhammer[-q, -q]/QPochhammer[q, -q])^3/QPochhammer[-q, q^2], {q, 0, n}]; Table[A178902[n], {n, 0, 50}] (* G. C. Greubel, Aug 17 2017 *)
a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m KroneckerSymbol[ -6, m], 0]]; (* Michael Somos, Apr 27 2018 *)
a[ n_] := SeriesCoefficent[ QPochhammer[ x^2]^13 / (QPochhammer[ x] QPochhammer[ x^4]^5, {x, 0, n}]; (* Michael Somos, Apr 27 2018 *)
PROG
(PARI) {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -6, n), 0)};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%24<12, p, -p)^(e\2))))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 / (eta(x + A)^5 * eta(x^4 + A)^5), n))};
CROSSREFS
Apart from signs, same as A080332, A116916, A133079 and A134756.
Sequence in context: A116916 A080332 A134756 * A176713 A293506 A011350
KEYWORD
sign
AUTHOR
Michael Somos, Jun 21 2010
STATUS
approved