Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Aug 04 2024 18:05:54
%S 1,5,7,0,0,11,0,-13,0,0,0,0,-17,0,0,-19,0,0,0,0,0,0,-23,0,0,0,25,0,0,
%T 0,0,0,0,0,0,29,0,0,0,0,31,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,0,-37,0,0,0,
%U 0,0,0,0,0,0,0,0,0,-41,0,0,0,0,0,0,-43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-47,0,0,0,0,0,0
%N Expansion of q^(-1/24) * eta(q^2)^13 / (eta(q)^5 * eta(q^4)^5) in powers of q.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H Seiichi Manyama, <a href="/A178902/b178902.txt">Table of n, a(n) for n = 0..10000</a>
%H G. Köhler, <a href="http://dx.doi.org/10.7146/math.scand.a-12299">Some eta-identities arising from theta series</a>, Math. Scand. 66 (1990), 147-154.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(q) * phi(q)^2 = f(q)^3 * chi(q)^2 = phi(q)^3 / chi(q) in powers of q where f(), phi(), chi() are Ramanujan theta functions.
%F Euler transform of period 4 sequence [5, -8, 5, -3, ...].
%F a(n) = b(24*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(e/2) if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 13, 17, 19, 23 (mod 24).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(3/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t).
%F G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 + x^(2*k - 1))^5 = Sum_{k>0} Kronecker( -6, k) * k * x^((k^2 - 1) / 24) = Sum_{k in Z} (6*k + 1) * (-1)^floor(k/2) * x^(k * (3*k + 1) / 2).
%F a(n) = (-1)^n * A080332(n).
%e G.f. = 1 + 5*x + 7*x^2 + 11*x^5 - 13*x^7 - 17*x^12 - 19*x^15 - 23*x^22 + ...
%e G.f. = q + 5*q^25 + 7*q^49 + 11*q^121 - 13*q^169 - 17*q^289 - 19*q^361 + ...
%t A178902[n_] := SeriesCoefficient[(QPochhammer[-q, -q]/QPochhammer[q, -q])^3/QPochhammer[-q, q^2], {q, 0, n}]; Table[A178902[n], {n, 0, 50}] (* _G. C. Greubel_, Aug 17 2017 *)
%t a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, m KroneckerSymbol[ -6, m], 0]]; (* _Michael Somos_, Apr 27 2018 *)
%t a[ n_] := SeriesCoefficent[ QPochhammer[ x^2]^13 / (QPochhammer[ x] QPochhammer[ x^4]^5, {x, 0, n}]; (* _Michael Somos_, Apr 27 2018 *)
%o (PARI) {a(n) = if( issquare( 24*n + 1, &n), n * kronecker( -6, n), 0)};
%o (PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(24*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( (p<5) || (e%2), 0, if( p%24<12, p, -p)^(e\2))))};
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 / (eta(x + A)^5 * eta(x^4 + A)^5), n))};
%Y Apart from signs, same as A080332, A116916, A133079 and A134756.
%K sign
%O 0,2
%A _Michael Somos_, Jun 21 2010