login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178899
Numbers which are both primes and problimes (third definition).
1
2, 7, 11, 19, 23, 43, 53, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 1873, 1999, 2017, 2053, 2089, 2143, 2161, 2179, 2251, 2269, 2287, 2341, 2377, 2467, 2503, 2521, 2539, 2557, 2593, 2647, 2683, 2719, 2791, 2917, 2953, 2971, 3061, 3079
OFFSET
1,1
LINKS
M. D. Hirschhorn, How unexpected is the prime number theorem?, Amer. Math. Monthly, 80 (1973), 675-677.
M. D. Hirschhorn, How unexpected is the prime number theorem?, Amer. Math. Monthly, 80 (1973), 675-677. [Annotated scanned copy]
R. C. Vaughan, The problime number theorem, Bull. London Math. Soc., 6 (1974), 337-340.
FORMULA
A000040 INTERSECTION A003068.
MAPLE
b:= proc(n) option remember; local k;
if n=1 then c(2):= 1; 2
else k:= ceil(b(n-1) +1/mul((1-1/b(j)), j=1..n-1));
c(k):= n; k
fi
end:
a:= proc(n) option remember; local k;
if n=1 then b(1)
else for k from c(a(n-1))+1 while not isprime(b(k))
do od; b(k)
fi
end:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 29 2010
MATHEMATICA
nmax = 400;
b[n_] := b[n] = If[n==1, 2, Ceiling[b[n-1]+1/Product[1-1/b[j], {j, 1, n-1}]]];
Intersection[Array[b, nmax], Prime[Range[PrimePi[b[nmax]]]]] (* Jean-François Alcover, Nov 20 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Dec 29 2010
EXTENSIONS
More terms from Alois P. Heinz, Dec 29 2010
STATUS
approved