login
A178900
First nonzero value of (a^(p-1) - 1) mod p^2, for a > 0 coprime to the n-th Wieferich prime p.
2
341016, 24577
OFFSET
1,1
COMMENTS
It is believed that a(n) = (3^(p-1) - 1) mod p^2 for all n, where p = A001220(n).
See additional comments, references, links and cross-references in A001220.
LINKS
A. Ostafe and I. Shparlinski (2010), Pseudorandomness and Dynamics of Fermat Quotients, arXiv:1001.1504 [math.NT], 2010.
FORMULA
a(n) = (A178815(A000720(p))^(p-1) - 1) mod p^2, where p = A001220(n).
a(n) mod p = A178844(A000720(p)), where p = A001220(n).
EXAMPLE
The first Wieferich prime is 1093 and a^1092 - 1 mod 1093^2 = 0, 0, 341016 for a = 1, 2, 3, so a(1) = 341016.
CROSSREFS
KEYWORD
bref,hard,more,nonn
AUTHOR
Jonathan Sondow, Jun 23 2010
STATUS
approved