login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178844
First nonzero Fermat quotient mod the n-th prime.
3
1, 1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
OFFSET
1,3
COMMENTS
First nonzero value of q_p(m) mod p with gcd(m,p) = 1, where q_p(m) = (m^(p-1) - 1)/p is the Fermat quotient of p to the base m and p is the n-th prime p_n.
It is believed that a(n) = q_p(3) mod p, if p = p_n is a Wieferich prime A001220. See Section 1.1 in Ostafe-Shparlinski (2010).
See additional comments, references, links, and cross-refs in A001220 and A178815.
FORMULA
a(n) = q_p(A178815(n)) mod p, where p = p_n.
a(n) = A130912(n), if n > 1 and p_n is not a Wieferich prime. (Note: the offset of A130912 is n = 2.)
EXAMPLE
p_1 = 2 and (m^1 - 1)/2 = 0, 1 == 0, 1 (mod 2) for m = 1, 3, so a(1) = 1.
p_5 = 11 and (m^10 - 1)/11 = 0, 93 == 0, 5 (mod 7) for m = 1, 2, so a(4) = 5.
p_183 = 1093 and (m^1092 - 1)/1093 == 0, 0, 312 (mod 1093) for m = 1, 2, 3, so a(183) = 312.
Similarly, a(490) = 7.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jun 24 2010
EXTENSIONS
Nonexistent A-numbers removed by Jonathan Sondow, Jun 26 2010
STATUS
approved