login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130912
Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.
4
1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
OFFSET
2,2
REFERENCES
Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.
LINKS
FORMULA
Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.
EXAMPLE
a(4) = 2 = 9 mod 7 where A007663(4) = 9.
The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
MAPLE
a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d, ", fq mod p) ; od: # R. J. Mathar, Oct 28 2008
MATHEMATICA
Mod[(2^(#-1)-1)/#, #]&/@Prime[Range[2, 70]] (* Harvey P. Dale, Mar 31 2013 *)
PROG
(PARI) forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ Felix Fröhlich, Jul 26 2014
CROSSREFS
Cf. A007663.
Sequence in context: A340702 A070151 A331847 * A178844 A210714 A343782
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 08 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 28 2008
STATUS
approved