Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 21 2022 00:18:22
%S 1,3,2,5,3,13,3,17,1,6,1,23,25,44,36,8,36,10,2,56,19,48,6,57,92,59,13,
%T 67,83,18,17,53,30,96,56,82,67,47,3,50,148,50,104,175,135,109,189,201,
%U 68,7,26,142,247,225,128,260,109,70,74,58,78,294,175,120,175,139,153
%N Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.
%D Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.
%H Amiram Eldar, <a href="/A130912/b130912.txt">Table of n, a(n) for n = 2..10000</a>
%F Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.
%e a(4) = 2 = 9 mod 7 where A007663(4) = 9.
%e The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
%p a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d,",fq mod p) ; od: # _R. J. Mathar_, Oct 28 2008
%t Mod[(2^(#-1)-1)/#,#]&/@Prime[Range[2,70]] (* _Harvey P. Dale_, Mar 31 2013 *)
%o (PARI) forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ _Felix Fröhlich_, Jul 26 2014
%Y Cf. A007663.
%K nonn
%O 2,2
%A _Gary W. Adamson_, Jun 08 2007
%E More terms from _R. J. Mathar_, Oct 28 2008