login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130915
Number of permutations in the symmetric group S_n in which cycle lengths are odd and greater than 1.
6
1, 0, 0, 2, 0, 24, 40, 720, 2688, 42560, 245376, 4072320, 31672960, 569935872, 5576263680, 109492807424, 1290701905920, 27616577064960, 380852962029568, 8845627365089280, 139696582370328576, 3506062524305162240, 62387728088875499520, 1684340707284076756992
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 1..200 from Vincenzo Librandi)
FORMULA
E.g.f.: exp(-x)*sqrt((1+x)/(1-x)).
a(n) ~ 2*n^n/exp(n+1). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-1)^n*Sum_{k = 0..n} (1 if n = k, otherwise (-1)^(n + k)*(n - k)!*Sum_{i = 1..n - k} Sum_{j = i..n - k} 2^(j - i)*Stirling1(j, i)*binomial(n - k - 1, j - 1)/j!*binomial(n, k)). - Detlef Meya, Jan 18 2024
a(n) = (n-1)*(n-2)*(a(n-2)+a(n-3)) for n>=3. - Alois P. Heinz, Jan 18 2024
EXAMPLE
a(3)=2 because we have (123) and (132).
MAPLE
g:=exp(-x)*sqrt((1+x)/(1-x)): gser:=series(g, x=0, 30): seq(factorial(n)*coeff(gser, x, n), n=0..20); # Emeric Deutsch, Aug 25 2007
# second Maple program:
a:= proc(n) option remember;
`if`(n<3, 1/2, a(n-2)+a(n-3))*(n-1)*(n-2)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 18 2024
MATHEMATICA
nn=20; Drop[Range[0, nn]!CoefficientList[Series[((1+x)/(1-x))^(1/2)Exp[-x], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Dec 15 2012 *)
a[n_] := (-1)^n*Sum[If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]], {k, 0, n}]; Flatten[Table[a[n], {n, 1, 20}]] (* Detlef Meya, Jan 18 2024 *)
PROG
(PARI) my(x='x+O('x^33)); Vec(serlaplace(exp(-x)*sqrt((1+x)/(1-x)))) \\ Joerg Arndt, Jan 18 2024
CROSSREFS
Sequence in context: A005359 A008842 A347898 * A356576 A127067 A174077
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 23 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 25 2007
a(0)=1 prepended by Alois P. Heinz, Jan 18 2024
STATUS
approved