login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092812
Number of closed walks of length 2*n on the 4-cube.
8
1, 4, 40, 544, 8320, 131584, 2099200, 33562624, 536903680, 8590065664, 137439477760, 2199025352704, 35184380477440, 562949986975744, 9007199388958720, 144115188612726784, 2305843011361177600
OFFSET
0,2
COMMENTS
With interpolated zeros this has a(n) = (6*0^n + 4^n + (-4)^n + 4*2^n + 4*(-2)^n)/16 and counts closed walks of length n at a vertex of the 4-cube. [Typo corrected by Alexander R. Povolotsky, May 26 2008]
Also, cogrowth sequence of the 16-element group C2^4. - Sean A. Irvine, Nov 10 2024
LINKS
G. R. Franssens, On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. [From N. J. A. Sloane, Feb 21 2012]
L. Reyzin, Mathoverflow, Number of closed walks on an n-cube.
FORMULA
G.f.: (1-16*x+24*x^2)/((1-4*x)*(1-16*x)).
a(n) = 3*0^n/8 + 16^n/8 + 4^n/2.
From Peter Bala, Nov 13 2006: (Start)
E.g.f.: cosh^4(x).
O.g.f.: 1/(1-4*1*x/(1-3*2*x/(1-2*3*x/(1-1*4*x)))) (continued fraction). (End)
(-1)^n*a(n) = Sum_{k=0..n} A086872(n,k)*(-5)^(n-k). - Philippe Deléham, Aug 17 2007
a(n) = 20*a(n-1) - 64*a(n-2); a(0) = 1, a(1) = 4, a(2) = 40. - Harvey P. Dale, Aug 23 2011
a(n) = 4*A026244(n-1), n > 0. - R. J. Mathar, Oct 24 2014
a(n) = (1/2^4)*Sum_{j = 0..4} binomial(4, j)*(4 - 2*j)^(2*n). See Reyzin link. - Peter Bala, Jun 03 2019
MATHEMATICA
CoefficientList[Series[(1-16x+24x^2)/((1-4x)(1-16x)), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{20, -64}, {4, 40}, 30]] (* Harvey P. Dale, Aug 23 2011 *)
PROG
(Magma) [3*0^n/8+16^n/8+4^n/2: n in [0..30]]; // Vincenzo Librandi, May 31 2011
CROSSREFS
Essentially the same as A075878.
Sequence in context: A371676 A379244 A075878 * A349516 A290575 A196867
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2004
EXTENSIONS
Title improved by Sean A. Irvine at the suggestion of Peter Bala, Jun 04 2019
STATUS
approved