login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082311
A Jacobsthal sequence trisection.
14
1, 5, 43, 341, 2731, 21845, 174763, 1398101, 11184811, 89478485, 715827883, 5726623061, 45812984491, 366503875925, 2932031007403, 23456248059221, 187649984473771, 1501199875790165, 12009599006321323, 96076792050570581, 768614336404564651, 6148914691236517205
OFFSET
0,2
FORMULA
a(n) = (2*8^n + (-1)^n)/3 = A001045(3*n+1).
From R. J. Mathar, Feb 23 2009: (Start)
a(n) = 7*a(n-1) + 8*a(n-2).
G.f.: (1-2*x)/((1+x)*(1-8*x)). (End)
a(n) = A024494(3*n+1). a(n) = 8*a(n-1) + 3*(-1)^n. Sum of digits = A070366. - Paul Curtz, Nov 20 2007
a(n)= A007613(n) + A132805(n) = A081374(1+3*n). - Paul Curtz, Jun 06 2011
E.g.f.: (cosh(x) + 2*cosh(8*x) - sinh(x) + 2*sinh(8*x))/3. - Stefano Spezia, Jul 15 2024
MATHEMATICA
f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* Robert G. Wilson v, Aug 13 2011 *)
PROG
(Magma)[2*8^n/3+(-1)^n/3 : n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
(PARI) x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ G. C. Greubel, Sep 16 2018
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 09 2003
STATUS
approved