login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082365
A Jacobsthal number sequence.
12
1, 11, 85, 683, 5461, 43691, 349525, 2796203, 22369621, 178956971, 1431655765, 11453246123, 91625968981, 733007751851, 5864062014805, 46912496118443, 375299968947541, 3002399751580331, 24019198012642645, 192153584101141163
OFFSET
0,2
COMMENTS
A trisection of A024495. - Paul Curtz, Nov 18 2007
FORMULA
a(n) = (4*8^n -(-1)^n)/3.
a(n) = J(3*n+2) = A001045(3*n)/3.
a(n) = 4*A015565(n)+A015565(n+1).
From Philippe Deléham, Nov 19 2007: (Start)
a(0)=1, a(1)=11, a(n+1) = 7*a(n) + 8*a(n-1) for n>=1 .
G.f.: (1+4*x)/(1-7*x-8*x^2). (End)
MATHEMATICA
f[n_] := (4*8^n - (-1)^n)/3; Array[f, 20, 0] (* Robert G. Wilson v, Aug 13 2011 *)
LinearRecurrence[{7, 8}, {1, 11}, 20] (* Harvey P. Dale, May 06 2012 *)
PROG
(Magma) [4*8^n/3-(-1)^n/3: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
(PARI) vector(30, n, n--; (4*8^n -(-1)^n)/3) \\ G. C. Greubel, Sep 16 2018
CROSSREFS
Sequence in context: A295168 A001240 A129180 * A344480 A320940 A012794
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 09 2003
STATUS
approved