login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082367
G.f.: (1-8*x-sqrt(64*x^2-20*x+1))/(2*x).
6
1, 9, 90, 981, 11430, 140058, 1782900, 23369805, 313426350, 4281280686, 59360821740, 833312907522, 11820849447420, 169182862497108, 2440064033240040, 35428651752626109, 517446157031236350
OFFSET
0,2
COMMENTS
More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and n>0 a(n)=(1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1).
Hankel transform is 9^C(n+1,2). - Philippe Deléham, Feb 11 2009
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 9^k*C(n, k)*C(n, k-1).
D-finite with recurrence: (n+1)*a(n) + 10*(1-2n)*a(n-1) + 64*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011 Recurrence follows from the D.E. (x-20*x^2+64*x^3)*y' + (1-10*x)*y - 1 - 8*x = 0 satisfied by the g.f.. - Robert Israel, Mar 16 2018
a(n) ~ sqrt(3)*2^(4*n+1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018
MAPLE
f:= gfun:-rectoproc({64*n*a(n)+(-30-20*n)*a(1+n)+(3+n)*a(n+2), a(0) = 1, a(1) = 9}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 16 2018
MATHEMATICA
Table[SeriesCoefficient[(1-8*x-Sqrt[64*x^2-20*x+1])/(2*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n)=if(n<1, 1, sum(k=0, n, 9^k*binomial(n, k)*binomial(n, k-1))/n)
(PARI) x='x+O('x^99); Vec((1-8*x-(64*x^2-20*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-8*x-Sqrt(64*x^2-20*x+1))/(2*x))); // G. C. Greubel, Sep 16 2018
CROSSREFS
Sequence in context: A143079 A233829 A165324 * A276506 A049389 A127769
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved