login
A082370
a(n) = number of sets of consecutive primes whose arithmetic mean is A000040(n).
3
1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 3, 1, 2, 4, 3, 3, 5, 1, 1, 6, 2, 3, 1, 2, 1, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 4, 2, 1, 2, 4, 3, 3, 3, 2, 2, 1, 2, 1, 4, 3, 5, 2, 1, 2, 1, 3, 1, 3, 1, 3, 3, 2, 3, 2, 3, 1, 1, 2, 1, 5, 2, 1, 2, 3, 1, 2, 1, 3, 3, 2, 1, 1, 5, 2, 2
OFFSET
1,3
LINKS
FORMULA
a(n) = A122821(A000040(n)).
EXAMPLE
For n=3; A000040(3) = 5. the two sets are 5/1 = 5, (3+5+7)/3 = 5. so a(3)=2.
MAPLE
N:= 300:
P:= [0, seq(ithprime(i), i=1..N)]:
S:= ListTools:-PartialSums(P):
mmax:= numtheory:-pi(floor(S[N]/N)):
V:= Vector(1..mmax, 1):
for i from 1 to N+1 do
for j from i+2 to N+1 do
r:= (S[j]-S[i])/(j-i);
if r::integer and isprime(r) then
k:= numtheory:-pi(r);
if k <= mmax then
V[k]:= V[k]+1
fi
fi
od od:
convert(V, list); # Robert Israel, Mar 18 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, May 11 2003
EXTENSIONS
Extended by Ray Chandler, Oct 03 2006
STATUS
approved