login
A082373
Table with 4 consecutive primes prime(k), prime(k+1), prime(k+2) and prime(k+3) in a row such that prime(k)^x + prime(k+1)^x == prime(k+2) (mod prime(k+3)) has no solution x.
0
3, 5, 7, 11, 17, 19, 23, 29, 23, 29, 31, 37, 31, 37, 41, 43, 53, 59, 61, 67, 67, 71, 73, 79, 71, 73, 79, 83, 79, 83, 89, 97, 83, 89, 97, 101, 97, 101, 103, 107, 107, 109, 113, 127, 109, 113, 127, 131, 113, 127, 131, 137, 127, 131, 137, 139, 131, 137, 139, 149, 137
OFFSET
1,1
COMMENTS
Note overlapping primes between successive quadruples.
This is a rewriting of A082371 with prime(A082371(n)) building the first column in the table.
EXAMPLE
For prime 17, 17^x + 19^x == 23 (mod 29) has no solutions, which constitutes the 2nd row.
3, 5, 7, 11;
17, 19, 23, 29;
23, 29, 31, 37;
31, 37, 41, 43;
53, 59, 61, 67;
67, 71, 73, 79;
...
PROG
(PARI) \\ No solutions to prime(i)^x+prime(i+1)^x ~= prime(i+2) mod prime(i+3)
noanpbn(m, n) = { for(p=1, m, f=0; for(x=0, n, if((prime(p)^x+prime(p+1)^x-prime(p+2))%prime(p+3)==0, f=1) ); if( f==0, print1(p" ")) ) }
CROSSREFS
Cf. A082371.
Sequence in context: A094615 A245396 A144574 * A116959 A249505 A091305
KEYWORD
easy,nonn,tabf
AUTHOR
Cino Hilliard, May 11 2003
STATUS
approved