%I #9 Mar 18 2018 04:30:25
%S 1,1,2,1,1,1,2,1,2,2,2,2,1,2,2,4,1,1,1,2,1,2,1,3,2,3,1,2,1,3,3,1,2,4,
%T 3,3,5,1,1,6,2,3,1,2,1,2,3,2,3,2,1,1,2,2,2,4,2,1,2,4,3,3,3,2,2,1,2,1,
%U 4,3,5,2,1,2,1,3,1,3,1,3,3,2,3,2,3,1,1,2,1,5,2,1,2,3,1,2,1,3,3,2,1,1,5,2,2
%N a(n) = number of sets of consecutive primes whose arithmetic mean is A000040(n).
%H Robert Israel, <a href="/A082370/b082370.txt">Table of n, a(n) for n = 1..4000</a>
%F a(n) = A122821(A000040(n)).
%e For n=3; A000040(3) = 5. the two sets are 5/1 = 5, (3+5+7)/3 = 5. so a(3)=2.
%p N:= 300:
%p P:= [0,seq(ithprime(i),i=1..N)]:
%p S:= ListTools:-PartialSums(P):
%p mmax:= numtheory:-pi(floor(S[N]/N)):
%p V:= Vector(1..mmax,1):
%p for i from 1 to N+1 do
%p for j from i+2 to N+1 do
%p r:= (S[j]-S[i])/(j-i);
%p if r::integer and isprime(r) then
%p k:= numtheory:-pi(r);
%p if k <= mmax then
%p V[k]:= V[k]+1
%p fi
%p fi
%p od od:
%p convert(V,list); # _Robert Israel_, Mar 18 2018
%Y Cf. A050221, A060863, A082431, A122821.
%K easy,nonn
%O 1,3
%A _Naohiro Nomoto_, May 11 2003
%E Extended by _Ray Chandler_, Oct 03 2006