Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Sep 08 2022 08:45:10
%S 1,9,90,981,11430,140058,1782900,23369805,313426350,4281280686,
%T 59360821740,833312907522,11820849447420,169182862497108,
%U 2440064033240040,35428651752626109,517446157031236350
%N G.f.: (1-8*x-sqrt(64*x^2-20*x+1))/(2*x).
%C More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and n>0 a(n)=(1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1).
%C Hankel transform is 9^C(n+1,2). - _Philippe Deléham_, Feb 11 2009
%H Vincenzo Librandi, <a href="/A082367/b082367.txt">Table of n, a(n) for n = 0..200</a>
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
%F a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 9^k*C(n, k)*C(n, k-1).
%F D-finite with recurrence: (n+1)*a(n) + 10*(1-2n)*a(n-1) + 64*(n-2)*a(n-2) = 0. - _R. J. Mathar_, Dec 08 2011 Recurrence follows from the D.E. (x-20*x^2+64*x^3)*y' + (1-10*x)*y - 1 - 8*x = 0 satisfied by the g.f.. - _Robert Israel_, Mar 16 2018
%F a(n) ~ sqrt(3)*2^(4*n+1)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 14 2012
%F G.f.: 1/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - ...))))), a continued fraction. - _Ilya Gutkovskiy_, Apr 04 2018
%p f:= gfun:-rectoproc({64*n*a(n)+(-30-20*n)*a(1+n)+(3+n)*a(n+2), a(0) = 1, a(1) = 9}, a(n), remember):
%p map(f, [$0..30]); # _Robert Israel_, Mar 16 2018
%t Table[SeriesCoefficient[(1-8*x-Sqrt[64*x^2-20*x+1])/(2*x),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)
%o (PARI) a(n)=if(n<1,1,sum(k=0,n,9^k*binomial(n,k)*binomial(n,k-1))/n)
%o (PARI) x='x+O('x^99); Vec((1-8*x-(64*x^2-20*x+1)^(1/2))/(2*x)) \\ _Altug Alkan_, Apr 04 2018
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-8*x-Sqrt(64*x^2-20*x+1))/(2*x))); // _G. C. Greubel_, Sep 16 2018
%Y Cf. A006318, A047891.
%K nonn
%O 0,2
%A _Benoit Cloitre_, May 10 2003