login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082366
G.f.: (1 - 7*x - sqrt(49*x^2 - 18*x + 1))/(2*x).
6
1, 8, 72, 712, 7560, 84616, 985032, 11814728, 145043208, 1813915912, 23029334856, 296050614216, 3846007927944, 50412893051784, 665925356663496, 8855844075949128, 118467982501096968, 1593108078166843912
OFFSET
0,2
COMMENTS
More generally coefficients of (1 - m*x - sqrt(m^2*x^2 - (2*m+4)*x + 1))/(2*x) are given by a(0)=1 and a(n) = (1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1) for n > 0.
Hankel transform is 8^C(n+1,2). - Philippe Deléham, Feb 11 2009
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
a(0)=1; a(n) = (1/n)*Sum_{k=0..n} 8^k*C(n, k)*C(n, k-1) for n > 0.
D-finite with recurrence: (n+1)*a(n) + 9*(1-2n)*a(n-1) + 49*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(16+18*sqrt(2))*(9+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 7*x - x/(1 - 7*x - x/(1 - 7*x - x/(1 - 7*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018
MATHEMATICA
CoefficientList[Series[(1-7x-Sqrt[49x^2-18x+1])/(2x), {x, 0, 20}], x] (* Harvey P. Dale, Feb 22 2011 *)
PROG
(PARI) a(n)=if(n<1, 1, sum(k=0, n, 8^k*binomial(n, k)*binomial(n, k-1))/n)
(PARI) x='x+O('x^99); Vec((1-7*x-(49*x^2-18*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
(GAP) Concatenation([1], List([1..20], n->(1/n)*Sum([0..n], k->8^k*Binomial(n, k)*Binomial(n, k-1)))); # Muniru A Asiru, Apr 05 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-7*x-Sqrt(49*x^2-18*x+1))/(2*x))); // G. C. Greubel, Sep 16 2018
CROSSREFS
Sequence in context: A098411 A220741 A165323 * A221159 A378156 A049388
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved