The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344480 a(n) = Sum_{d|n} d * sigma_d(d), where sigma_k(n) is the sum of the k-th powers of the divisors of n. 1
 1, 11, 85, 1103, 15631, 284795, 5764809, 134745175, 3486961642, 100097682141, 3138428376733, 107019534806039, 3937376385699303, 155577590686826319, 6568408813691811835, 295152408847835466855, 14063084452067724991027, 708238048886862707907062, 37589973457545958193355621, 2097154000001929438984022793 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If p is prime, a(p) = Sum_{d|p} d * sigma_d(d) = 1*(1^1) + p*(1^p + p^p) = 1 + p + p^(p+1). LINKS EXAMPLE a(6) = Sum_{d|6} d * sigma_d(d) = 1*(1^1) + 2*(1^2 + 2^2) + 3*(1^3 + 3^3) + 6*(1^6 + 2^6 + 3^6 + 6^6) = 284795. MATHEMATICA Table[Sum[k*DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 30}] PROG (PARI) a(n) = sumdiv(n, d, d*sigma(d, d)); \\ Michel Marcus, May 21 2021 CROSSREFS Cf. A245466, A321141, A334874, A343781, A344434. Sequence in context: A001240 A129180 A082365 * A320940 A012794 A302954 Adjacent sequences:  A344477 A344478 A344479 * A344481 A344482 A344483 KEYWORD nonn AUTHOR Wesley Ivan Hurt, May 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 11:29 EDT 2021. Contains 347689 sequences. (Running on oeis4.)