login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A Jacobsthal number sequence.
12

%I #27 Sep 08 2022 08:45:10

%S 1,11,85,683,5461,43691,349525,2796203,22369621,178956971,1431655765,

%T 11453246123,91625968981,733007751851,5864062014805,46912496118443,

%U 375299968947541,3002399751580331,24019198012642645,192153584101141163

%N A Jacobsthal number sequence.

%C A trisection of A024495. - _Paul Curtz_, Nov 18 2007

%H Vincenzo Librandi, <a href="/A082365/b082365.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,8).

%F a(n) = (4*8^n -(-1)^n)/3.

%F a(n) = J(3*n+2) = A001045(3*n)/3.

%F a(n) = 4*A015565(n)+A015565(n+1).

%F From _Philippe Deléham_, Nov 19 2007: (Start)

%F a(0)=1, a(1)=11, a(n+1) = 7*a(n) + 8*a(n-1) for n>=1 .

%F G.f.: (1+4*x)/(1-7*x-8*x^2). (End)

%t f[n_] := (4*8^n - (-1)^n)/3; Array[f, 20, 0] (* _Robert G. Wilson v_, Aug 13 2011 *)

%t LinearRecurrence[{7,8},{1,11},20] (* _Harvey P. Dale_, May 06 2012 *)

%o (Magma) [4*8^n/3-(-1)^n/3: n in [0..30]]; // _Vincenzo Librandi_, Aug 13 2011

%o (PARI) vector(30, n, n--; (4*8^n -(-1)^n)/3) \\ _G. C. Greubel_, Sep 16 2018

%Y Cf. A015565, A082311.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Apr 09 2003