Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Jul 15 2024 17:56:05
%S 1,5,43,341,2731,21845,174763,1398101,11184811,89478485,715827883,
%T 5726623061,45812984491,366503875925,2932031007403,23456248059221,
%U 187649984473771,1501199875790165,12009599006321323,96076792050570581,768614336404564651,6148914691236517205
%N A Jacobsthal sequence trisection.
%H Vincenzo Librandi, <a href="/A082311/b082311.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,8).
%F a(n) = (2*8^n + (-1)^n)/3 = A001045(3*n+1).
%F From _R. J. Mathar_, Feb 23 2009: (Start)
%F a(n) = 7*a(n-1) + 8*a(n-2).
%F G.f.: (1-2*x)/((1+x)*(1-8*x)). (End)
%F a(n) = A024494(3*n+1). a(n) = 8*a(n-1) + 3*(-1)^n. Sum of digits = A070366. - _Paul Curtz_, Nov 20 2007
%F a(n)= A007613(n) + A132805(n) = A081374(1+3*n). - _Paul Curtz_, Jun 06 2011
%F E.g.f.: (cosh(x) + 2*cosh(8*x) - sinh(x) + 2*sinh(8*x))/3. - _Stefano Spezia_, Jul 15 2024
%t f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* _Robert G. Wilson v_, Aug 13 2011 *)
%o (Magma)[2*8^n/3+(-1)^n/3 : n in [0..30]]; // _Vincenzo Librandi_, Aug 13 2011
%o (PARI) x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ _G. C. Greubel_, Sep 16 2018
%Y Cf. A001045, A007613, A015565, A024494, A070366, A081374, A082365, A132805.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Apr 09 2003