The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055372 Invert transform of Pascal's triangle A007318. 14
 1, 1, 1, 2, 4, 2, 4, 12, 12, 4, 8, 32, 48, 32, 8, 16, 80, 160, 160, 80, 16, 32, 192, 480, 640, 480, 192, 32, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 128, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 256, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005 T(n,k) is the number of nonempty bit strings with n bits and exactly k 1's over all strings in the sequence. For example, T(2,1)=4 because we have {(01)},{(10)},{(0),(1)},{(1),(0)}. - Geoffrey Critzer, Apr 06 2013 LINKS Table of n, a(n) for n=0..54. N. J. A. Sloane, Transforms Index entries for triangles and arrays related to Pascal's triangle FORMULA a(n,k) = 2^(n-1)*C(n, k), for n>0. G.f.: A(x, y)=(1-x-xy)/(1-2x-2xy). As an infinite lower triangular matrix, equals A134309 * A007318. - Gary W. Adamson, Oct 19 2007 Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Feb 05 2012 EXAMPLE Triangle begins: 1; 1, 1; 2, 4, 2; 4, 12, 12, 4; 8, 32, 48, 32, 8; ... MATHEMATICA nn=10; f[list_]:=Select[list, #>0&]; a=(x+y x)/(1-(x+y x)); Map[f, CoefficientList[Series[1/(1-a), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Apr 06 2013 *) CROSSREFS Row sums give A081294. Cf. A000079, A007318, A055373, A055374. Cf. A134309. T(2n,n) gives A098402. Sequence in context: A240893 A241108 A151706 * A241078 A198285 A136620 Adjacent sequences: A055369 A055370 A055371 * A055373 A055374 A055375 KEYWORD nonn,tabl AUTHOR Christian G. Bower, May 16 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 09:16 EDT 2024. Contains 373515 sequences. (Running on oeis4.)