|
|
A074519
|
|
a(n) = 1^n + 5^n + 9^n.
|
|
0
|
|
|
3, 15, 107, 855, 7187, 62175, 547067, 4861095, 43437347, 389373615, 3496550027, 31429887735, 282673677107, 2543086531455, 22882895970587, 205921649672775, 1853172776742467, 16677944639119695, 150098449994264747
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..18.
Index entries for linear recurrences with constant coefficients, signature (15,-59,45).
|
|
FORMULA
|
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-5*x) + 1/(1-9*x).
E.g.f.: e^x + e^(5*x) + e^(9*x). (End)
a(n) = 14*a(n-1) - 45*a(n-2) + 32 with a(0)=3, a(1)=15. - Vincenzo Librandi, Jul 21 2010
|
|
MATHEMATICA
|
Table[1^n + 5^n + 9^n, {n, 0, 20}]
LinearRecurrence[{15, -59, 45}, {3, 15, 107}, 20] (* Harvey P. Dale, Oct 10 2017 *)
|
|
CROSSREFS
|
Cf. A001550, A001576, A034513, A001579, A074501..A074580.
Sequence in context: A107878 A218688 A120016 * A105618 A120732 A245835
Adjacent sequences: A074516 A074517 A074518 * A074520 A074521 A074522
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 23 2002
|
|
STATUS
|
approved
|
|
|
|