OFFSET
0,1
COMMENTS
Equals A135576, except for the first term. - Omar E. Pol, Nov 18 2008
Conjecture: For n > 1, if a(n) = 1^n + 2^n + 4^n is a prime number then n is of the form 3^h. For example, for h=1, n=3, a(n) = 1^3 + 2^3 + 4^3 = 73 (prime); for h=2, n=9, a(n) = 1^9 + 2^9 + 4^9 = 262657 (prime); for h=3, n=27, a(n) is not prime. - Vincenzo Librandi, Aug 03 2010
Another more elementary proof can be found in Liu link. - Bernard Schott, Mar 08 2019
Fills in one quarter section of the figurate form of the Sierpinski square curve. See illustration in links and A141725. - John Elias, Mar 29 2023
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
Andy Liu, West German Mathematical Olympiad 1982 - Second round, Problem 4, Crux Mathematicorum, p. 105, Vol. 12, May. 86.
Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
FORMULA
a(n) = 6*a(n-1) - 8*a(n-2) + 3.
O.g.f.: -1/(-1+x) - 1/(-1+2*x) - 1/(-1+4*x) = ( -3+14*x-14*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Feb 29 2008
E.g.f.: e^x + e^(2*x) + e^(4*x). - Mohammad K. Azarian, Dec 26 2008
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 35*x^2 + 155*x^3 + ... is the o.g.f. for the 2nd subdiagonal of triangle A022166, essentially A006095. - Peter Bala, Apr 07 2015
MATHEMATICA
Table[1^n + 2^n + 4^n, {n, 0, 24}]
PROG
(Sage) [sigma(4, n)for n in range(0, 23)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=1+2^n+4^n \\ Charles R Greathouse IV, Jun 10 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved