OFFSET
3,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 3..576
M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7
FORMULA
For n>=3, a(n)=(Bell(n)+3Bell(n-1)+5Bell(n-2)+2Bell(n-3))/6, where Bell(n) is the n-th Bell number (the Bell numbers are given in A000110).
E.g.f.: (e^(3x)+6e^(2x)+9e^x+2)(e^(e^x-1))/6.
EXAMPLE
The partitions of {1,1,1,2} are {{1},{1},{1},{2}}, {{1,1},{1},{2}}, {{1,2},{1},{1}}, {{1,1},{1,2}}, {{1,1,1},{2}}, {{1,1,2},{1}} and {{1,1,1,2}}, so a(4)=7.
MATHEMATICA
Table[(BellB[n] + 3 BellB[n - 1] + 5 BellB[n - 2] + 2 BellB[n - 3])/ 6, {n, 3, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Griffiths, Dec 02 2009
STATUS
approved