login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024088
a(n) = 8^n - 1.
17
0, 7, 63, 511, 4095, 32767, 262143, 2097151, 16777215, 134217727, 1073741823, 8589934591, 68719476735, 549755813887, 4398046511103, 35184372088831, 281474976710655, 2251799813685247, 18014398509481983
OFFSET
0,2
COMMENTS
Numbers whose base 8 or octal representation is 777777.......7. - Zerinvary Lajos, Feb 03 2007
FORMULA
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-8*x) - 1/(1-x).
E.g.f.: exp(8*x) - exp(x). (End)
a(n) = A000225(n)*A001576(n). - Reinhard Zumkeller, Feb 15 2009
a(n) = 8*a(n-1) + 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = Sum_{i=1..n} 7^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A001018(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248725. - Amiram Eldar, Nov 13 2020
MATHEMATICA
8^Range[0, 20]-1 (* or *) LinearRecurrence[{9, -8}, {0, 7}, 20] (* Harvey P. Dale, Jan 04 2017 *)
PROG
(Sage) [gaussian_binomial(3*n, 1, 2) for n in range(0, 20)] # Zerinvary Lajos, May 28 2009
(Sage) [stirling_number2(3*n+1, 2) for n in range(0, 20)] # Zerinvary Lajos, Nov 26 2009
(Sage) [8^n-1 for n in (0..20)] # Bruno Berselli, Nov 11 2015
(PARI) vector(20, n, n--; 8^n -1) \\ G. C. Greubel, Aug 03 2019
(Magma) [8^n -1: n in [0..20]]; // G. C. Greubel, Aug 03 2019
(GAP) List([0..30], n-> 8^n -1); # G. C. Greubel, Aug 03 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved