OFFSET
0,2
COMMENTS
Numbers whose base 8 or octal representation is 777777.......7. - Zerinvary Lajos, Feb 03 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (9,-8).
FORMULA
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-8*x) - 1/(1-x).
E.g.f.: exp(8*x) - exp(x). (End)
a(n) = 8*a(n-1) + 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = Sum_{i=1..n} 7^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A001018(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248725. - Amiram Eldar, Nov 13 2020
MATHEMATICA
8^Range[0, 20]-1 (* or *) LinearRecurrence[{9, -8}, {0, 7}, 20] (* Harvey P. Dale, Jan 04 2017 *)
PROG
(Sage) [gaussian_binomial(3*n, 1, 2) for n in range(0, 20)] # Zerinvary Lajos, May 28 2009
(Sage) [stirling_number2(3*n+1, 2) for n in range(0, 20)] # Zerinvary Lajos, Nov 26 2009
(Sage) [8^n-1 for n in (0..20)] # Bruno Berselli, Nov 11 2015
(PARI) vector(20, n, n--; 8^n -1) \\ G. C. Greubel, Aug 03 2019
(Magma) [8^n -1: n in [0..20]]; // G. C. Greubel, Aug 03 2019
(GAP) List([0..30], n-> 8^n -1); # G. C. Greubel, Aug 03 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved